Lucia F. Jacobs
3117 Tolman Hall
Office Hours: 
Wed 2-3
Research Area: 
Secondary Research Area: 
Curriculum Vitae: 

Office 510-642-5739 
Lab 510-642-6931

Research Interests: 
We study how an individual's cognition is adapted to the structure of its environment.
  • whatshotResearch Description

    Mobile animals must track and predict the behavior of prey, predators, mates and competitors across space and time. We are interested in how diverse animal species, including humans, do this - how they choose routes, attend to different spatial cues and make foraging and food-storing decisions - all in the context of a constantly changing physical and social environment.

    We have several current research areas. First, we study the use of olfaction in navigation, even in humans (Jacobs, 2012; Jacobs et al., 2015). Recently funded by NSF, we are expanding this program to compare diverse invertebrate species with the decisions made by mammals such as search dogs and humans, to identify the universal heuristics of olfactory navigation. 

    We also study cognitive biomechanics: how animals use their knowledge of the structure of space - both its spatial layout and the biomechanical challenges of locomotion on different substrates - to develop energy-efficient routes during exploration and foraging. We study these questions using experimental studies of geckos, tree squirrels and other vertebrate species, as well as using computational models of behavior.

    Finally, we study a squirrel’s decision to store food for the future, as an experimental paradigm for understanding how the environment, both physical and social, influences decision making. Tree squirrels face thousands of foraging decisions each fall – “should I eat or cache this acorn?” – as they must harvest and cache their winter food supply in a matter of weeks. Food items are hidden individually yet squirrels do not defend their extensive caching areas. Instead, they rely on careful economic decisions on which items to cache and where to cache them, as well as using mnemonics to help them remember thousands of cache locations. Finally, they also pilfer other squirrels’ caches, an area of current interest. We study these questions year-round using experimental and observational studies of individually-marked, habituated fox squirrels on the Berkeley campus, as well as developing computational models of these cache and retrieval decisions.

    Our earlier work focused on how an individual’s spatial cognition and hippocampal structure may be adapted to its environmental structure and how this can differ among individuals of different species, sex or age. This work led to our development of the parallel map theory, an evolutionary model of navigation and hippocampal function (Jacobs & Schenk, 2003; Jacobs, 2006). 

    (updated, February 2016)

  • placeSelected Publications

    Delgado, M.M. and Jacobs, L.F. (2016). Inaccessibility of reinforcement increases persistence and signaling behavior in the fox squirrel, Sciurus niger. Journal of Comparative Psychology 130(2), 128–137.

    Jacobs, L. F., Arter, J., Cook, A., & Sulloway, F. J. (2015). Olfactory orientation and navigation in humans. PLoS ONE, 10(6) e0129387. doi:10.1371/journal.pone.0129387.s001.

    Delgado, M.M., Nichols, M., Petrie, D.J. & Jacobs, L.F. (2014). Fox squirrels match food assessment and cache effort to value and scarcity. PLoS ONE, 9(3), e92892. doi:10.1371/journal.pone.0092892.s003.

    MacLean, E.L. et al. (36 authors; L.F. Jacobs and M.M. Delgado) (2014). The evolution of self-control. Proc Nat Acad Sci USA, 111(20), E2140–8. doi:10.1073/pnas.1323533111

    Jacobs, L.F. & Randolf Menzel (2014). Navigation outside the box: what the lab can learn from the field and what the field can learn from the lab. Movement Ecology 2: 3. Doi:10.1186/10.1186/2051-3933-2-3.

    Waismeyer, A. S., & Jacobs, L. F. (2013). The emergence of flexible spatial strategies in young children. Developmental Psychology, 49(2), 232–242.

    Jacobs, L. F. (2012). From chemotaxis to the cognitive map: the function of olfaction. Proc Nat Acad Sci USA, 109, 10693–10700.

    Chai, X. J., & Jacobs, L. F. (2009). Sex differences in directional cue use in a virtual landscape. Behavioral Neuroscience, 123(2), 276–283.

    Preston, S. D., & Jacobs, L. F. (2009). Mechanisms of cache decision making in fox squirrels (Sciurus niger). Journal of Mammalogy, 90(4), 787–795.

    Waisman, A. S., & Jacobs, L. F. (2008). Flexibility of cue use in the fox squirrel (Sciurus niger). Animal Cognition, 11(4), 625–636.

    Barkley, C., & Jacobs, L. F. (2007). Sex and species differences in spatial memory in food-storing kangaroo rats. Animal Behaviour, 73(2), 321–329.

    Jacobs, L. F., and Schenk, Françoise. (2003). Unpacking the cognitive map: the parallel map theory of hippocampal function. Psychological Review, 110, 285-315.

    Preston, S. D., & Jacobs, L. F. (2005). Cache decision making: the effects of competition on cache decisions in Merriam's kangaroo rat (Dipodomys merriami). Journal of Comparative Psychology, 119(2), 187.

    Preston, S. D., & Jacobs, L. F. (2001). Conspecific pilferage but not presence affects Merriam's kangaroo rat cache strategy. Behavioral Ecology, 12(5), 517–523.

    Jacobs, L. F. (1992). Memory for cache locations in Merriam's kangaroo rats, Animal Behaviour, 43(4), 585–593.

    Jacobs, L. F., & Liman, E. R. (1991). Grey squirrels remember the locations of buried nuts, Animal Behaviour, 41(1), 103–110.

    Jacobs, L. F., Gaulin, S. J. C., Sherry, D. F., & Hoffman, G. E. (1990). Evolution of spatial cognition: sex-specific patterns of spatial behavior predict hippocampal size. Proc Nat Acad Sci USA, 87(16), 6349–6352.

  • filter_dramaTeaching

    Psychology 121:  Animal Cognition

    Psychology 290B: Topics in Cognitive Evolution