Lucia F. Jacobs
Professor
Office: 
Rm 3330, 2121 Berkeley Way (by appointment)
Office Hours: 
2018-19 on sabbatical, Grass Fellow, Radcliffe Institute for Advanced Study, Harvard University
Education: 
B.S., Cornell; Ph.D., Princeton
Research Area: 
Secondary Research Area: 
Curriculum Vitae: 

Office 510-642-5739 

Accepting Students: 
Research Interests: 
We study how an individual's cognition adapts - across developmental and evolutionary timespans - to the structure of its environment.
  • whatshotResearch Description

    Mobile animals must track and predict the behavior of prey, predators, mates and competitors across space and time. We are interested in how diverse animal species, including humans, do this - how they choose routes, attend to different spatial cues and make foraging and food-storing decisions - all in the context of a constantly changing physical and social environment.

    Our research focuses on champion species, with specialized abilities to solve sensory, motor or cognitive challenges. Currently we are team members of a NSF Ideas Lab collaboration with physicists and neuroscientists (odornavigation.org), teaming our efforts to identify the universal heuristics of navigation to odors. Our champion species for this project is the trained search dog, tracking humans under different weather conditions. We contrast dog navigation strategies with that of humans, fruit flies and mice navigating in real and virtual olfactory environments, in collaboration with our fellow team members. Our other champion species is the Berkeley campus fox squirrel, our model species for cognitive biology. We study both foraging decisions and what we call cognitive biomechanics: how animals use their knowledge of the structure of space - both its spatial layout and the biomechanical challenges of locomotion on different substrates - to develop energy-efficient routes during exploration and foraging.

    Our studies of foraging decisions in squirrels is an experimental paradigm for understanding how the environment, both physical and social, influences decision making. Tree squirrels face thousands of foraging decisions each fall – “should I eat or cache this acorn?” – as they must harvest and cache their winter food supply in a matter of weeks. Food items are hidden individually yet squirrels do not defend their extensive caching areas. Instead, they rely on careful economic decisions on which items to cache and where to cache them, as well as using mnemonics to help them remember thousands of cache locations. Finally, they also pilfer other squirrels’ caches, an area of current interest. We study these questions year-round using experimental and observational studies of individually-marked, habituated fox squirrels on the Berkeley campus, as well as developing computational models of these cache and retrieval decisions.

    Our field work on campus squirrels has led to a new team collaboration on squirrel behavior with biomechanicists, roboticists, mathematicians and material scientists, working together to build the first robotic squirrel. We will study squirrel cognition through the lens of cognitive development, identifying parameters that can lead to the development of innovative behaviors. Partnering with WildCare (https://www.discoverwildcare.org/), we will bring orphaned squirrel pups to Berkeley to study their behavioral development in our new “Squirrel School”, housed at Berkeley’s Field Station for Behavioral Research (near the Lawrence Hall of Science, https://vcresearch.berkeley.edu/research-unit/field-station-study-behavi...). Our research will identify the mechanism by which squirrels learn survival skills: opening nuts, caching and retrieving nuts, the development of spatial memory and pilfering strategies and finally, learning the biomechanics of navigating tree canopies. Squirrels “graduate” when they have learned these skills, at which point WildCare will return the squirrels to the wild. In the future, we plan to employ new technology to track their subsequent behavior and survival.

    Our earlier work focused on how an individual’s spatial cognition and hippocampal structure may be adapted to its environmental structure and how this can differ among individuals of different species, sex or age. This work led to our development of the parallel map theory, an evolutionary model of navigation and hippocampal function (Jacobs & Schenk, 2003), the olfactory spatial hypothesis on the evolution of olfactory function in vertebrates (Jacobs, 2012) and PROUST hypothesis, on the evolution of the main and vomeronasal olfactory systems in vertebrates (Jacobs, in prep).

    I will be on leave at the Radcliffe Insitute for Advanced Study, Harvard University, during the 2018-19 academic year.

    (updated, August 2018)

  • placeSelected Publications

    Delgado, M.M. and Jacobs, L.F. (2017) Caching for what and where: evidence for a mnemonic strategy in a scatter-hoarder. Royal Society Open Science. 4: 170958. http://dx.doi.org/10.1098/rsos.170958

    Delgado, M.M. and Jacobs, L.F. (2016). Inaccessibility of reinforcement increases persistence and signaling behavior in the fox squirrel, Sciurus niger. Journal of Comparative Psychology 130(2), 128–137. doi.org/10.1037/com0000021

    Jacobs, L. F., Arter, J., Cook, A., & Sulloway, F. J. (2015). Olfactory orientation and navigation in humans. PLoS ONE, 10(6) e0129387. doi:10.1371/journal.pone.0129387.s001.

    MacLean, E.L. et al. (36 authors; L.F. Jacobs and M.M. Delgado) (2014). The evolution of self-control. Proc Nat Acad Sci USA, 111(20), E2140–8. doi:10.1073/pnas.1323533111

    Jacobs, L.F. & Randolf Menzel (2014). Navigation outside the box: what the lab can learn from the field and what the field can learn from the lab. Movement Ecology 2: 3. Doi:10.1186/10.1186/2051-3933-2-3.

    Waismeyer, A. S., & Jacobs, L. F. (2013). The emergence of flexible spatial strategies in young children. Developmental Psychology, 49(2), 232–242. http://doi.org/10.1037/a0028334

    Jacobs, L. F. (2012). From chemotaxis to the cognitive map: the function of olfaction. Proc Nat Acad Sci USA, 109, 10693–10700. http://doi.org/10.1073/pnas.1201880109

    Chai, X. J., & Jacobs, L. F. (2009). Sex differences in directional cue use in a virtual landscape. Behavioral Neuroscience, 123(2), 276–283. http://doi.org/10.1037/a0014722

    Waisman, A. S., & Jacobs, L. F. (2008). Flexibility of cue use in the fox squirrel (Sciurus niger). Animal Cognition, 11(4), 625–636.

    Barkley, C., & Jacobs, L. F. (2007). Sex and species differences in spatial memory in food-storing kangaroo rats. Animal Behaviour, 73(2), 321–329. http://doi.org/10.1016/j.anbehav.2006.07.009

    Jacobs, L. F., and Schenk, Françoise. (2003). Unpacking the cognitive map: the parallel map theory of hippocampal function. Psychological Review, 110, 285-315.

  • filter_dramaTeaching

    Psychology 124:  The Evolution of Human Social Behavior (next offering: Fall 2019)

    Psychology 121: Animal Cognition

    Psychology 290B: Current Topics in Cognitive Evolution (next offering: Fall 2019)