PSYCH 147: Methods in Cognitive Development
TIME TBD
LOCATION TBD

Instructors: TBD

Office hours: Kidd: TBD

Discussion section: TBD

Course objectives: The goal of this course is to introduce you to the excitement of studying development, primarily in humans. The course covers different methodologies for studying development, and how to interpret the resulting data. Students will become more wise consumers of empirical data on development, whether those data appear in scholarly or popular media. This course provides students with the analytical tools and productive skepticism required to objectively evaluate findings in developmental science.

Attendance policy: Reliable attendance is crucial to learning and success in this class. The course relies heavily on lectures, demos, and discussions, all of which happen during the class time. Though attendance will not be taken, you must attend the lectures reliably to do well in the course. Additionally, 5% of your grade depends on your participation in in-class discussions.

Laptop policy: A laptop section of the classroom will be established for students who wish to use their laptops to take notes, but students are encouraged to consider whether this is necessary for note-taking only and avoid laptop usage for other purposes in order to minimize distractions for others in the classroom. Slides will be made available after lectures via Blackboard.

Email list: We have established an email list on Google Groups for this course, to which you have already been added if you enrolled in the course before the first day of classes. The group is devmindbrain@googlegroups.com. We will use this group to send you information and readings for the course. If you are not already enrolled, or you would like to receive these messages at a different preferred email address, simply request to be added to this group or email one of us to request that we add you.

Course email: You may email any one of us with questions about the course or assignments; however, written assignments should be submitted to the course email address,
devmindbrain@gmail.com. Assignments must be submitted before the beginning of class on the day on which they are due to this account.

Exams: Exams in this course will require you to use your analytical reasoning abilities, in conjunction with your (newly acquired) knowledge of experimental design for developmental science. You will not be asked to recall details of experiments, but rather you will be tested on your conceptual knowledge of developmental science methodologies. Testing will take the form of three exams (two in-class and one final exam during the finals period).

Readings: There is no textbook for this course. Peer-reviewed journal articles that utilize the developmental methods under discussion will be sent out to the class via the class email list (devmindbrain@googlegroups.com). The point of these readings is to familiarize students with developmental methods and practices. Diligent reading will help prepare students for the three problem-solving based exams.

Question responses: Each week during which there is no exam, you will be given a big question relating to the topics under discussion for which you must write a one-page (single-spaced) written response. Responses are due at the beginning of class one week from when they were assigned, and should be submitted via email to the class email account (devmindbrain@gmail.com). Of these seven assignments, some will be graded for content and others for completion. You will not know in advance which assignment will receive which grading treatment, so do your best on all. As part of these, you will also be asked to pose your own “big” question about developmental science to the professor and TAs.

Late work: Assignments are due in paper form at the beginning of class on the day on which they are due. They should be emailed to devmindbrain@gmail.com. Late assignments will not be accepted.

Grading:

<table>
<thead>
<tr>
<th></th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams</td>
<td>75%</td>
</tr>
<tr>
<td>Exam 1</td>
<td>20%</td>
</tr>
<tr>
<td>Exam 2</td>
<td>25%</td>
</tr>
<tr>
<td>Exam 3 (Final)</td>
<td>30%</td>
</tr>
<tr>
<td>Weekly written assignments</td>
<td>20%</td>
</tr>
<tr>
<td>Content grades</td>
<td>10%</td>
</tr>
<tr>
<td>Completion grades</td>
<td>10%</td>
</tr>
<tr>
<td>Participation</td>
<td>5%</td>
</tr>
</tbody>
</table>

Guest lectures: TBD
Academic honesty: We will take any evidence of duplication or plagiarism (e.g., copying someone else’s writing, or failing to cite the work, ideas, or writings of someone else, and presenting it as your own) very seriously, and expect students to adhere to the principles laid out in the UC Berkeley Honor Code.

Learning assistance: Students with disabilities are encouraged to work with the Disabled Students’ Program for assistance in seeking accommodations to maximize their learning potential. They can be reached at (510) 642-0518, visit us at 260 César Chávez Student Center, or e-mail dsp@berkeley.edu.
Course schedule:

WEEK 1
Course overview and introductions
Developmental science in popular media

Readings:
(1) Recent developmental news articles from popular press

WEEK 2
Observational studies
Motor responses 1

Readings:
(1) Wilhelm Preyer, Mind of the Child Vols 1 & 2, 1882
(2) Piaget, Essential Piaget, 1977
(3) Everett, Don’t Sleep There Are Snakes, 2008
(4) DeLoache et al, Science, 2004; TiCS, 2004

WEEK 3
Motor responses 2
Verbal responses

Readings:
(1) Walk & Gibson, Sci. Am., 1960
(3) Hogrefe, Wimmer, & Perner, Child Development, 1986
(4) Gopnik & Astington, Child Development, 1988
(5) Baron-Cohen, Leslie, & Frith, 1985
(6) Repacholi & Gopnik, Developmental Psychology, 1997

WEEK 4
High-amplitude sucking procedure
Fetal measures

Readings:
(1) Eimas et al., Science, 1971
(2) Ramus et al., Science, 2000
(3) Byers-Heinlein, Psych. Sci., 2010
(4) Mauriceau, The Diseases of Women, 1683

WEEK 5
Exam 1 review / Q&A

EXAM 1

Readings:
None

Exam 1
WEEK 6 Habituation paradigms
Preferential listening & looking

Readings:
1. Baillargeon, Spelke, & Wasserman, Cognition, 1985
5. Lew-Williams & Fernald, J. of Memory and Lang., 2010

WEEK 7 GUEST LECTURE (Looking paradigms)
Eye-tracking

Readings:
1. Johnson et al., PNAS, 2003

WEEK 8 Learning trajectory analysis
Rearing experiments

Readings:
3. Harlow, American Psychologist, 1958

WEEK 9 Exam 2 review / Q&A

Readings:
None

WEEK 10 Computational modeling 1
Computational modeling 2

Readings:
1. Téglás et al., Science, 2011
2. Piantadosi et al., Dev. Sci, 2014
WEEK 11
GUEST LECTURE (Computational modeling)
Individual differences

Q5 Response Due

Readings:

WEEK 12
Cross-cultural comparison
GUEST LECTURE (Cross-cultural work)

Q6 Response Due

Readings:
1. Mindell et al., Sleep Medicine, 2010

WEEK 13
Classroom methods
The importance of convergent data

Q7 Response Due

Readings:
1. Shernoff et al., Learning and Instruction, 2016
2. Mattis et al., Technology, Knowledge, & Learning, 2015

WEEK 14
The importance of skepticism
Exam 3 review / Q & A

Readings:
1. Randi, Flim-Flam, 1980

FINAL
EXAM 3

Exam 3 Today